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The authors consider a hydrodynamic model of the limiting heat transfer in inclined 
thermosyphons and heat pipes under stratified motion of the heat-transfer agent. 

The operation of heat pipes with excess heat-transfer agent in a gravity field differs 
from the method of operation of heat pipes with a nominal charge, in that the return of the 
liquid heat-transfer agent to the heat supply zone can be accomplished both along the capil- 
lary-porous wick and by stream flow of liquid under the action of gravity along the lowest 
generator of the inside surface. In order to reduce the thermal resistance of heat pipes 
which use gravity and can be conventionally called gravity-type it is desirable to reduce the 
thickness of the wick to a minimum, reducing its function to the distribution of liquid over 
the surface of the heat-carrying zones. In this case the axial limit of a gravity heat pipe 
will be set by the hydrodynamics of the liquid and vapor flows of heat-transfer agent, inter- 
acting on the interface, as was shown in [i] for a pipe position close to horizontal. As a 
model of such a gravity heat pipe we can take an inclined evaporative thermosyphon with a 
small amolmt of heat-transfer agent, which independently warrants investigation. The objec- 
tive of the present study is to develop techniques for calculating the heat-transfer limit 
of gravity heat pipes with a wick having low permeability in the axial direction, and of in- 
clined evaporative thermosyphons with a low charge operating in the stratified liquid and 
vapor flow regime, and also to investigate the thermal resistance of these for near limiting 
load conditions. The approach used is a development of an idea of [i] for the case of large 
slope angles; here the following basic assumptions are made: the flow of the liquid and the 
vapor is stratified, the free surface of the liquid is close to planar (Fig. i), and the flow 
regime of the liquid is laminar. 

The equations of hydrodynamics for the heat-transfer agent in a heat pipe have the form: 

u ~ + --~Y ~" t - u ,  ~ av = ~l - - - t - g s i n q ~ , d z  

u l ~ , = o  = O, - - f~  , e,=o 8~t 

(1) 

~o~ (2) 

Here Eq. (I) is the boundary-layer equation for a liquid in the Oseen approximation, and Eq. 
(2) is the equation of vapor motions along a channel of hydraulic diameter Dhv. Relations 
for fv, Bv allowing for the effects of blowing and suction have been given in [2], but it is 
hardly appropriate to allow for these effects in the present situation because, first, their 
influence on the results of the calculation is usually small, and secondly, the shape of the 
channel section for the vapor is not circular and does not have axial symmetry for the radial 
component of the flow velocity. Taking this into account, for simplicity we put B v = 1.33, 
fv = 64/Rev for the laminar regime of the vapor, and Bv = 1.03, fv = 0.316/Re~ "2s for the 
turbulent regime. 

We shall write the pressure balance equation for any section of the heat pipe as fol- 
lows: 
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dPl dP~ ( d H  tg(p),  
dz d---~ = P t g  cos tp d z  ( 3 )  

where the z coordinate is reckoned from the condenser. It can be seen from Eq. (3) that in 
the horizontal situation the heat-transfer agent is transported under the action of the 
hydrostatic head due to the variation of the liquid level along the length. The heat flux 
transmitted through a given section of the heat pipe is connected with the average veloci- 
ties of the liquid and the vapor by the explicit relation Q(z)=~t~S~pvr=ftiSzptr. Taking ac- 
count of what has been said, one can write the mass conservation equation for boundary con- 
ditions of the third kind at the outside surface of the heat pipe for known internal heat- 
transfer coefficients ac: 

dQ (z..____~) = ~z~:, (Te~ - -  To) 2aR,x , Q (0) = O, Q (L) = O. 
dz 1 + aex 

OSe 

A second boundary condition for Q is necessary to determine the vapor temperature T v. In 
the present analysis we restrict attention to the most widespread ease of boundary conditions 
of the second kind with a linear variation of heat flux along the heat-carrying zones and a 
given Tv: 

z 
O(z)=Qa--~+ , 0 ~ z < L = ;  Q(z)=Qa,  L e ~ z < ~ L c + L a ;  .. 

Q (Z) = Oa (L --- z) 1.__~_, Lc + La "< z ~ L. (4) 
L~ 

For completeness of the heat-pipe description we need an integral relation for the mass of 
heat-transfer agent charged 

M = M  s +M~, +M6,  (5) 

where M, M s , Mv and M6 are, respectively, the total mass of heat-transfer agent, the mass of 
liquid in the stream, the vapor mass and the mass of the liquid film on the heat-pipe walls. 

We shall briefly describe the method of solving the system (i)-(5). Equation (I) with 
the appropriate boundary conditions is a two-dimensional boundary problem which it is desir- 
able to consider separately for G=0 in the dimensionless form: 

U= 

a w  azu 
c)x z -+ O_ff2 EU = 1, (6) 

Ul,,,,=0 = O, = ~ ,  K, 
,+, o 8~zR" d-+,,o-' 

dz 

U~z 
RZ ' dP: 

dz 

, E =  m 2-L a_~z ) , -;= R ' - y =  ~ " 

It is convenient to solve Eq. (6) by the Ritz method using R-functions [3]. We shall write 
n o r m a l i z e d  e x p r e s s i o n s  f o r  t he  b o u n d a r i e s  of  t he  r e g i o n  o c c u p i e d  by t h e  l i q u i d :  

�9 o~  -= 0 . 5  [ 1 - -  ~2  _ ( ~  + c o s  00)21,  o ~  = u ,  

2 

The problem of Eq. (6) is solved in the form 

v .  (~z -~) = ~ c,jx,j + K ~ - -  V 1 - -  ~ + cos Oo). 
~+i=0 

The Ritz system for determining the n undetermined coefficients Cij in this case has the 
form 

(7) 
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Fig. I. The limiting thermosyphon heat transfer Qmax (w) as a function of the slope 
angle ~ (deg): the points are the experimental data of [4]; the curve is theory; I) 
section of the thermosyphon transport zone. 

Fig. 2. The limiting heat transfer Qmax (W) of a thermosyphon as a function of the 
slope angle ~ (deg), for various charge levels: the points are experimental data, 
the curves are calculation; I) M = 0.59 g; 2) 1.38; 3) 2.17; 4) 9.28. 

I ( g X i i O X k m O X i i O X h m  ] 
c .  S ' - q- + = I OoX md dy + KX ,,,d dy. 

~,i~o s~ Ox 07 ~ ~ ~i ,~,=o 

where 

a@u am O(Du ao~ ] 

[ [ ( - )  ],} 
�9 2 2 cos arctg cosO o 

3 

Do = K [(1 - -  7z) - ~ - -  E (y ' - -  V1---~--  ~ ~ + cos 0o)1 - -  1, 

and T21(s T2j(~) are Chebyshev polynomials of the first kind. The solution of the Ritz sys- 
tem and the determination of the velocity field from Eq. (7) is done with the aid of a com- 
puter, and here even for n = i0 we achieve good solution accuracy, and the solution was 
checked by comparison with the model problems for O0=90 ~ E=0; O0-+0 and comparison with the 
results of [I]. The numerical experiments have shown that reverse flows arise for consider- 
able vapor flow velocities on the liquid surface. The pressure gradient in the liquid due 
to friction and acceleration is expressed as follows: 

dP___L 
dz pzR ~ rV ' slJ 

or in terms of the friction factor 

d p  l - 2  
pzuz (8)  

d--K- = - k  T ~ 7 , ~  ' 

A numerical calculation performed in the present study gives good agreement with the expres- 
sion for fl obtained in [i] for E = O: 

k = 6--!-4 + 8 . 2 . 1 0 - %  p~,-,, (20o)6. (9 )  
Rez Pv 

In the case of very small O0, typical for large heat-pipe slope angles, one can obtain a 
more accurate expression. We note that for values of O0, tending to zero the ratio of the 
height of section S~ to its width also tends to zero so that we can reduce the problem to the 
one-dimensional case, which has an analytical solution. After determining the velocity dis- 
tribution and integrating over Sl, we obtain the following expression for fl at small O0: 

5 0 7  



BOo Rez Oocos Oo + -[~- Tv p; ' ( ~ -  O - ~  ~n-~o c-o~-@-~ 3 ' (10) 

B = -  cosSeo tgeo-F 3 cos= eoln tg ( ~  q- ~ )  --  3 cos Oo + sin Oo. 

The c a l c u l a t i o n  of Eq. (10) should  be made wi th  i n c r e a s e d  accuracy .  We n o t e ,  fo r  example,  
that for 00=5 ~ the difference in the results of calculating the components relating to in- 
teraction of the vapor and liquid flows, from Eqs. (9) and (i0) is 25%, and for 00=20 ~ it 
is less than 5%. For the case of short evaporation and condensation zones at large heat 
flux levels the value of fz can be influenced appreciably by blowing and suction of mass 
from the surface of the stream. Then to determine fl we use the results of a numerical cal- 
culation of the function V(~)0, K, E) but, as is shown by analysis, in most actual cases one 
achieves good accuracy by putting E = 0 and determining fl from Eqs. (9) and (I0), as has 
been done in the example calculations below. 

Using explicit trigonometric expressions relating the height of the stream region H 
with its area and the quantity O0, and also expressing the mean vapor and liquid flow veloc- 
ities in terms of Q(z), from Eqs. (2), (3), and (8) we obtain a nonlinear differential equa- 
tion of first order for H: 

dz 1 - -  R s i n O o - - ( R - - H )  cos@o 
PlPog cos (pS~ r z sin @o 

1 -f~Q~ (z) fo (z) 21~0 (z) aQ (z) (11) 
= tg qo -F Pzg cos ~ 2pzr~S~Di, z 2 2 -t- ~ 2 �9 2p~r S~ Dhv p~r S~ dz 

Equation (ii) is solved numerically using a standard Hemming procedure, and the integral 
condition (5) is implemented by using a target method with the boundary condition H(L) = He. 
It should be noted that for large heat-pipe slope angles a solution is reached only by greatly 
reducing the step size in coordinate z compared with the case ~=0. The values of M s , M v, 
M$ were calculated after determining H(z). In the thermosyphon calculation M$ can be found 
from modified Nusselt theory, and for large charge levels the value of M6 is negligibly small 
compared with M s. The limit of the heat transfer Qn~x is defined by the heat-flux region 
for which the problem of Eqs. (5) and (Ii) has no solution and is determined by extending 
H(z) beyond the region of existence [0, 2R]. When Qmax is reached, the quantity H(L) in the 
numerical experiments has a value close to zero; from this one can postulate that in the ex, 
periment an increase of the evaporator wall temperature must occur in the region of the end 
of the heat pipe. 

With an increase of the mass of heat-transfer agent charge to some value M0 the heat- 
transfer limit increases, and for subsequent increase of the charge mass Qmax does not depend 
on M, and Mu decreases with increase of ~. 

The assumptions made in formulating the problem limit the region of application of the 
model to the range of variation 0 ~ i  , where ~i is determined by comparison with the ex- 
perimental data. The use of the model is made a little difficult by the possibility of a 
boiling regime with vaporization of liquid in the stream; the occurrence of vapor bubbles 
increases the hydraulic resistance of the stream and forms waves on its surface, which are 
then subject to the dynamic action of the vapor flow. 

For an experimental check of the validity of the chosen model we used a conventional 
technique to investigate the heat-transfer characteristics of a thermosyphon with a IKhlSNgT 
stainless steel body as a function of the charge mass and the slope angle. Heat was sup- 
plied by a resistance heater. The surface temperature was measured with the aid of thermo- 
couples stamped into the heat-pipe wall along:its lower, side, and upper generators. The 
thermosyphon had the following parameters: R v = 5 ram, Rex = 6 mm, L e = 0.4 m, L c = 0.22 m, 
La = 0.38 m; the heat-transfer agent was acetone. A comparison of the calculated and mea- 
sured results is made in Fig. 2. The comparison shows that for better quantitative agreement 
of the data the hydraulic diameter of the liquid flow in Eq. (8) should be determined from 
the calculated ratio of the area of region S l to the total perimeter of the stream; here the 
error in determining Qmax according to the model considered can be evaluated roughly as 30%, 
Figure I compares the calculation with the experimental data of [4] (R v = 2.5 mm, Le = L c = 
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Fig. 3. The heat-transfer coefficients in the heat supply 
zone (a) and condensation zone (b) of the thermosyphon ~e, ~c 
(W/m~.deg) as a function of the power transferred Q (W) at near 
limiting heat loads: i) M = 1.38 g; 2) 9.28. 

0.16 m, L a = 0.18 m, M = 3.5 g, T v = 60~ heat-transfer agent is water). The calculation 
error also does not exceed 30% for ~50 ~ The experiments have shown, as was hypothesized, 
that the heat-transfer crisis in the thermosyphon shows up as a sharp increase of the temp- 
erature of the end of the evaporator, which is evidence in favor of the hydrodynamic limit 
of heat transfer, considered in the present study. 

It is typical that in the experiment we noted appreciable heating of the upper part of 
the thermosyph0n evaporator relative to the base, for a given cross section, amounting to 
30-40~ This is explained by the fact that only the lower part of the inside surface of 
the heat pipe, covered by a stream of liquid, is efficiently cooled; the heat supplied is 
removed from the remaining part by heat conduction of the body and by heat transfer to the 
vapor by forced convection. The process of heat conduction through the body of the thermo- 
syphon at a section close to the middle of the evpoarator, where the longitudinal temperature 
gradients are small, is described by the equation 

k,~ In - -  

with the boundary conditions 

Rex d zT -T(zeRv + (zcRvTv q- Rexq (O) -- 0 (12) 
Rv dO z 

Here T is the wall temperature averaged over the thickness. In view of the fact that ~e(O) 
and q(O) are functions of arbitrary form, the problem is solved numerically, ~c and q are 
given in the form of tables for a number of equidistant points with respect to O. The heat- 
conduction equation is approximated, along with the boundary conditions, in a finite-dif- 
ference mesh with second-order accuracy with respect to @, and is solved by a marching method. 
From the solution of the heat-conduction problem one can approximately evaluate the degrada- 
tion of the internal heat-transfer coefficients due to drying out of part of the evaporator 
surface and to blocking of the lower part of the condenser by the liquid. This estimate is 
relative, since it does not account for possible irrigation of the upper zone of the evapora- 
tor by drops of liquid formed with boiling in the stream. In addition, the literature has 
information of rather low reliability enabling one to calculate heat-transfer coefficients 
with vapor formation in a liquid stream. As a result of the variation of the coefficients 
~c in Eq. (12) for the thermosyphon described and the comparison of the calculated heating 
values with the experimental, one can conclude that in inclined thermosyphons made of low- 
conductivity material with a small charge, convective heat transfer between the vapor and the 
heated inside surface becomes appreciable. In fact, the experimental values of the heat- 
transfer coefficients ~e, averaged over the evaporator surface and shown in Fig. 3a for a low 
charge of M = 1.38 g, correspond to the heat-transfer coefficients for convective heat trans- 
fer between the wall and the vapor, determined from formulas for established heat transfer, 
with an error equal to the experimental error. This is explained by the smallness of the 
area occupied by the stream. With an increase of the charge to 9.28 g the coefficients ~e 
increase by roughly a factor of two. The thermosyphon slope angle for a given Q can be de- 
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termined roughly from Fig. 2, since the data presented correspond to nearly limiting levels 
of charge. 

The influence of the charge level on the heat transfer in the condensation zone is in- 
verse compared with the evaporator: with increase of M in the experiments we noted a reduc- 
tion of ~c, as shown in Fig. 3b. This is explained by blocking of part of the condenser 
surface by the stream of liquid. 

The results presented show that the level of the heat-transfer coefficients in an in- 
clined thermosyphon can be quite low. This touches on a special feature of the heat-supply 
zone. In cases like these one can reduce the thermal resistance by using a capillary porous 
coating of small thickness applied to the inside surface. 

In conclusion, it should be stressed that the hydrodynamic heat-transfer model examined 
here allows one to determine the heat-transfer limit of the evaporator of an inclined thermo- 
syphon with a low charge of heat-transfer agent and of a gravity heat pipe with a wick of 
low transport capability at slope angles of up to 50 ~ relative to the horizontal. The re- 
suits of the analysis can be used to build a general mathematical model of the gravity heat 
pipe with excess heat-transfer agent. 

NOTATION 

u, Velocity; P, pressure; ~ , slope angle; z, longitudinal coordinate; r, latent heat of 
vaporization; %, thermal conductivity; p, density; ~, ~, kinematic and dynamic viscosity; 
Bv, momentum flux factor; f, friction factor; Dh, hydraulic diameter; S, area; Re, Reynolds 
number; e, coefficient of heat transfer; g = 9.81 m/sec2; R, radius; Q, heat flux; T, temp- 
erature; K, dimensionless shear stress; H, height of the liquid stream;O0 , semiangle of 
the stream; V, dimensionless volume flow rate; M, mass of heat-transfer agent; L, heat pipe 
length. Indices: v, vapor; Z, liquid; ex, external; max, maximum; e, evaporator; a, 
transport zone; s, stream; 6, condensate film; c, condenser; av, average; m, material of 
body; t, total. 
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